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Abstract

The utility of bistatic radar remote sensing using GPS signals to estimate changes in vegetation
surrounding a ground-based antenna is evaluated. A one-dimensional, plane-stratified model
that simulates the response of GPS SNR data to changes in both soil moisture and vegetation is
presented. The model is validated against observations of SNR data from four field sites with
varying vegetation cover. The model is used to assess the ability of SNR metrics (phase and
amplitude of SNR oscillations, and effective reflector height) to quantify changes in vegetation
extent, specifically vegetation wet weight. This analysis shows that the amplitude of SNR
oscillations may be used to estimate vegetation change when vegetation wet weight does not
exceed 1 kg m™. Error introduced by the effect of soil moisture on amplitude is approximately
0.1-0.2 kg m™. When vegetation cover exceeds 1 kg m?, as it would in agricultural settings,
amplitude alone cannot be used to estimate vegetation. Phase of SNR oscillations also varies
consistently with vegetation up to 1 kg m?. However, phase is also very sensitive to soil
moisture variations, thus limiting its ability to also measure vegetation. Effective reflector
height is not a consistent indicator of vegetation change for most canopies. Beyond 1 kg m?,
the constant frequency assumption used to characterize SNR fluctuations does not adequately
describe observed data, most likely due to reflections from the vegetation canopy. A more
complex approach to describing SNR data than the metrics used here is required to extend GPS-
IR sensing to thicker canopies.

1. Introduction



Quantifying key vegetation parameters, including the timing and duration of green-up,
maturity, senescence, and dormancy, is important for phenologists, climate scientists, and
agriculturalists [1]. These parameters are essential in understanding the effect of shifting
precipitation regimes on ecology, ensuring future food security, and in the implementation of
variable-rate technologies such as fertilizer applications [2][3]. In addition, quantifying
vegetation extent, such as vegetation water content, is important to soil scientists interested in
using remote sensing data products for soil moisture estimation. This is because soil moisture
retrievals are affected by changes in vegetation cover [4][5]. As vegetation grows, the reliability
of the retrievals decreases.

Different remote sensing techniques have been developed to estimate vegetation
biophysical parameters, using a variety of antennas and frequency bands. Here, we focus on
microwave frequencies, which are not affected by cloud cover or available sunlight. Microwave
remote sensing can be divided into two categories: passive or active. Both categories measure
how microwaves are attenuated or changed by the ground surface’s permittivity or dielectric
constant, which is primarily a function of its water content [6]. Passive microwave remote
sensing uses one receiving antenna that collects naturally-emitting microwave radiation from
the ground and relates this information to changes in soil moisture or vegetation water
content. Active microwave sensing uses one antenna that transmits microwaves towards the
ground surface and measures their interaction with the surface. If the receiving antenna is the
same as the transmitting antenna (monostatic, or one antenna), vegetation water content is
related to the amount of backscatter that is received, with higher backscatter values being

associated with higher water contents [7]. If the receiving antenna is different from the



transmitting antenna (bistatic, or two antennas), vegetation water content is related to the
amount of forward scattering, or the amount of received power at the antenna. In this case,
lower received power is correlated with higher water contents [8]. The technique described in
this paper uses a bistatic antenna system.

The constellation of GPS satellites (transmitting antennas) together with ground-, plane-
, Or space-based receiving antennas can be used to sense environmental variables in a bistatic
radar approach. Numerous investigators have employed this general technique to study the
ocean and land surface [9]. Ocean studies have focused on surface height and wind speed
retrieval, and both theoretical [10] and experimental studies [11] have proven the utility of the
approach, even for receiving antennas that are stationed in low earth orbit [12]. Terrestrial
properties may also be estimated using bistatic sensing of reflected GPS signals (e.g. [13] and
[14]). However, this line of research is just beginning. A subset of these studies has been
focused on vegetation. Most of these studies have used antennas or receivers specifically
designed for the task [15][16]. [17] suggested that geodetic-quality antennas/receivers could be
used for vegetation sensing. This technique, known as GPS-Interferometric Reflectometry (GPS-
IR), is attractive because ground-based GPS networks already exist that can provide data for
vegetation studies.

GPS-IR is a technique that relates changes in ground-reflected, or multipath, GPS signals
(Fig. 1) to changes in environmental parameters for an area of approximately 1000 m?’
surrounding a GPS antenna. The exact sensing area depends on the number of satellite tracks
used and the height of the antenna. For a single satellite track, the sensing area can be

approximated using equations found in [18].



The interaction between the direct and multipath signal are recorded by GPS receivers
in signal-to-noise ratio (SNR) interferograms, examples of which are shown in Fig. 2a. Several
metrics can be calculated from the SNR interferogram (details in Section 2). Phase and
amplitude of the interferogram have been estimated using a constant frequency model, which
is based on the assumption that the soil surface is the dominant reflector [19] [20].
Alternatively, a change in the height of the primary reflector can be estimated from the SNR
data and correlated with changes in snow depth and near-surface soil moisture [20][21].
However, vegetation also affects GPS multipath, which may obfuscate the soil moisture signal.
Because GPS-IR uses the same microwave frequency band (L-band, ~1.2 GHz) as other remote
sensing satellites, like SMOS or SMAP, this technique could be used to validate satellite soil
moisture retrievals, but only if the effect of vegetation on GPS-IR is first quantified. It could also
provide estimates of vegetation extent on the field scale, which is the scale most useful for
agriculturalists and is intermediate to the scales of in situ measurements and satellite retrievals.

[17] showed that the amplitude of SNR oscillations decreases when vegetation extent is
high but did not quantify this effect. A time series of SNR amplitude in Fig. 3 illustrates that this
metric changes throughout the vegetation growing season. We will also show that SNR phase
and effective reflector height change during the year in response to vegetation. However, the
exact relationship between SNR metrics and vegetation is difficult to determine from field data
alone, given the heterogeneity of field sites, the inability to perfectly characterize vegetation
parameters through field sampling, noise in the observations, and the concurrent influence of

soil moisture on SNR metrics.



Here, we use field data and an electrodynamic forward model developed in [22] to
guantify how changes in vegetation affect SNR metrics. This model was used in [21] to illustrate
the effect of changes in soil moisture on SNR metrics for a bare soil. In this study, we adapt the
model by adding a layer of homogeneous vegetation on top of the soil. We also examine how
vertical variations in the vegetation canopy affect metrics. First, we describe our model and
validate it against field observations. The purpose of model validation is to see if we can
successfully simulate the shape of the SNR curve and how SNR metrics vary with vegetation
extent. Due to inherent errors in field measurements and other complexities described above,
we do not expect our model to perfectly mimic field observations. Next, we use the model to
qguantify how SNR metrics should theoretically respond to changes in vegetation characteristics,
specifically changes in vegetation wet weight, which is the amount of vegetation covering the
ground in [kg m™]. Lastly, we explore when and why our metrics either succeed or fail in
describing changes in vegetation state. This final analysis is important in order to conclude
whether upper or lower limits of vegetation sensing are due to the SNR data themselves or
shortcomings of the metrics used to describe the data.

2. GPS-IR Background

GPS-IR utilizes GPS antennas and receivers that are normally used for tectonic
applications to retrieve information about changes in the environment surrounding the
antenna. This technique is different from other bistatic reflectometry methods in that it does
not require a specially-designed antenna or receiver in order to estimate environmental

parameters (e.g. [23] and [16]). This technique is currently used at many of the already-existing



GPS stations that comprise NSF’'s Plate Boundary Observatory (PBO) network to estimate
changes in snow depth [24].

GPS-IR takes advantage of the interference of the coherent direct and reflected GPS
signals, which is recorded in SNR interferograms. This interference is greatest at grazing to low
satellite elevation angles (90 degrees being defined as zenith), as shown in Fig. 2a. For
environmental sensing, the SNR data are converted to a linear scale and detrended with a low-
order polynomial to remove the effect of the direct signal [18]. The detrended portion, which
oscillates around zero, is shown in Fig. 2b. In this paper, we will use the term SNR to mean the
detrended portion of the signal.

Detrended SNR data have previously been modeled using the following equation [25]:

SNR = Acos(% sinE + (p) (1)

Hy is the height of the antenna, E is the elevation angle of the satellite, A is a constant
amplitude, A is the GPS wavelength, and ¢ is a phase shift. Equation 1 will be referred to in this

paper as the ‘constant frequency model.” This expression assumes that the SNR data has a

4mH . - .
constant frequency (%). The observations in Figure 2b also show that A is not constant and

depends upon elevation angle. However, we use this approximation to minimize the number of
parameters required to describe the SNR curve. The simplified, constant frequency and
constant amplitude expression does not significantly affect bare ground soil moisture
estimations [21]. In this study, we assess how well this simple model applies to vegetation
sensing.

It has been shown both in field experiments and a modeling study that A and ¢ are

sensitive to changes in soil moisture content for a bare soil [20][21]. A and ¢ are found using
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least-squares estimation, with Hy set to the best approximation of the height of the antenna. In
practice, the actual antenna height is not known perfectly due to variations in surface elevation
surrounding the antenna. For these real data, Hy is assumed to be the average of bare soil or
low vegetation effective reflector height values, calculated using a Lomb-Scargle periodogram,
which is described below. For this reason, Hyis also referred to as the ‘a priori reflector height.’

Other studies have explored how the frequency of the SNR data changes in response to
changes in snow depth [24] and water level [26][27]. In these cases, a Lomb-Scargle
periodogram (LSP) is used to estimate the dominant frequency of the SNR curve (two examples
of LSPs are shown in Fig.2c) [28]. We chose the LSP over a Fourier transform because of its
ability to handle unevenly-sampled data. This method of data analysis is not related to the
constant frequency model in (1) or estimation of phase or amplitude described above, except in
initially establishing the a priori reflector height. The peak frequency of the Lomb-Scargle
periodogram is converted into an effective reflector height, Hef, using the following equation
[29]:

1.
H, =5_fm/1 (2)

Where fp, is the peak frequency of the LSP. Note that H. is not the same as the a priori reflector
height, Hy, in Equation 1. However, for soil moisture studies, Hes is very similar to Hy. For sea
and snow level studies, Hes varies with reflector distance. This is due to the fact that the
permittivity of water (and frequently for snow) is high enough so that the surface of the water
or snow acts as a single reflector for the multipath signal, with minimal influence from the

underlying medium.



Whether or not a vegetation canopy’s permittivity is large enough to act as the
dominant reflector is explored in this study. In the case of multiple reflectors, neither the
constant frequency model nor the peak frequency of the LSP will adequately characterize the
SNR data. Multiple reflectors could result from the soil surface and the top of the vegetation
canopy, or from the soil surface and multiple reflections within the canopy. In the case of
multiple reflectors, Hes would also not provide complete information about changes in
vegetation. This is discussed further in Section 6.

3. Methods
3.1 Vegetation Model

The 1-D, electrodynamic, single-scattering, forward model that we adapted to simulate
SNR data in this study was developed in [22] and further explored in [21]. The model was
originally developed for bare soil simulations for a flat surface surrounding an antenna. It
requires user-defined point soil moisture estimates at specified depths within the soil column. A
piecewise, cubic interpolation between depths is used to produce a soil moisture profile that is
20 cm thick, discretized into 1 mm layers, each with its own soil moisture value [21]. In this
study, however, we assume a soil column with soil moisture held constant for all depths. This
simplification is justified as [21] found that soil moisture variations with depth only minimally
impacted SNR metrics.

Soil moisture values are converted into complex permittivity values, using relationships
in [6]. [6] describes relationships between volumetric soil moisture and permittivity at L-band
frequency for five different soil types using a semi-empirical model. Here, we only report results

for a loam soil, as [21] showed that soil type has a negligible impact on SNR metrics.



Our adapted model uses specified vegetation canopy parameters and produces a one
dimensional, homogenous permittivity profile of the plant canopy on top of the soil. There is an
abrupt contrast between the canopy top and the layer of air above the canopy. [30] found, for a
plane-stratified model of vegetation, that such an abrupt transition between the top of the
canopy and air could create constructive and destructive interference that is not observed in
field data. We tested less-abrupt canopy tops, where we allowed the permittivity of the
vegetation canopy to gradually decrease to that of air over different percentages of the canopy
height (up to 50% of total canopy height). We conducted this test for canopy heights up to 100
cm and permittivities (real part) up to 1.1. We observed significant differences in SNR metrics
only when the transition layer was larger than one wavelength (~24 cm). For these canopies,
the largest differences were observed when canopy permittivity was greater than 1.05 (real
part), which is higher than for any of our modeled vegetation in this study. Thus, our plane-
stratified model would not be suitable for very thick canopies with a large transition layer.
Below, we demonstrate that the uniform canopy approximation is suitable for a broad range of
vegetation types.

Many studies have used plane-stratified models to simulate emission from vegetation
canopies at microwave frequencies (e.g. [31] and [30]). This is in contrast to a geometrical
modeling approach, in which each component of the plant canopy, such as stalks and leaves,
are modeled by their geometrical shapes (e.g. [32] and [33]). Geometrical modeling is used
because, at microwave frequencies, a canopy layer is often considered inhomogeneous and
anisotropic [34]. Geometric effects are most important when the components of the canopy,

i.e. stalks, leaves, or branches, are the same size or larger than the wavelength of the signal.
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Because the wavelength of the GPS L-band signal is approximately 24 cm, which is much longer
than X- or C-bands (~3 and 5 cm, respectively), we decided to use a plane-stratified model that
does not consider internal canopy geometry. For the range of vegetation types that we tested
in this study, geometric components of the canopy were smaller than our wavelength.
However, our model might not accurately simulate vegetation types (i.e. corn) that have
geometric components of at least 24 cm.

Assuming that structural geometric effects are negligible means that we neglect the
coherence loss of the reflected wave due to volume scattering within the plant canopy.
However, our model does take into account multiple reflections between one-dimensional
layers within the medium if they exist.

At its most basic level, the model uses volumetric soil moisture estimates at specified
depths within the soil column and specific vegetation canopy parameters as input to produce
theoretical SNR curves. We split our explanation of the model into two general parts:
permittivity profile generation and estimation of reflected power received at the antenna.

3.1.1 Permittivity profile generation

For reasons described in the following section, it is necessary for the model to convert
the soil moisture depth measurements and vegetation canopy parameters into a 1-D, stratified
permittivity profile. Creation of the permittivity layer for the soil is described above.

Vegetation input parameters include vegetation wet weight [kg m™], dry weight [kg m’
2], canopy height [m], vegetation water salinity [%o] and vegetation plant matter density [kg m’

3]. The height of the vegetation permittivity layer is thus canopy height.
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The permittivity of the vegetation is estimated using a model developed in [35], which
requires the frequency (L-band), salinity of vegetation water, and vegetation water content
(which we derived from wet and dry weights) to produce a complex permittivity of the
vegetation matter. [35] developed the model based on field measurements of corn leaves but
found good agreement when the model was extended to different vegetation types. We use
their average value of vegetation water salinity for all of our model simulations.

Because the vegetation canopy is actually a mixture of plant matter and air, we use the
Complex Refractive Index mixture equation from [36] to get the resulting permittivity of the
canopy:

Sié;rzwpy = Uueg"‘:iiz + Uairgclz{f (3)
Where: v,,.4 is the volume fraction of vegetation in the canopy, v, is the volume fraction of
air in the canopy, €,.4 is the permittivity of vegetation, and g,;,- is the permittivity of air (1.0).

The volume fractions of air and vegetation are estimated by knowing the canopy height
and assuming that the density of plant matter is directly proportional to its percent water
content.

Table 1 shows the calculated complex permittivities for the prescribed vegetation
parameters based on measurements from four field sites, described in detail in Section 3.2.
Note that values are very close to that of air, which is expected, given that most plant canopies
are comprised mostly of air [37].

3.1.2 Estimation of reflected power received at the antenna
After the combined soil/vegetation permittivity profile is generated, the model

estimates both right- and left-handed reflection coefficients that would result from a GPS
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multipath signal reflecting out of the soil/vegetation layers at a specified angle of incidence
(elevation angle) [38]. The reflection coefficients are combined with the left- and right-handed
values of the antenna gain at that elevation angle to get the resulting indirect power. Altering
the gain pattern will alter the indirect power. The model uses values of gain for a GPS choke
ring antenna typical of our field sites measured in an anechoic chamber.

The procedure described above is repeated for each specified elevation angle in the
user specified range. In this paper, we use an elevation angle range of 5-30 degrees, in
approximately 0.002 degree increments, which is the range used in previous GPS-IR studies [19]
[20]. The interference between the power of the direct and indirect signals makes up the
modeled SNR data. A more detailed explanation of model mechanics is described in [22] and
will not be included here.

3.2 GPS Data from Field Sites

We use GPS data from four field sites to validate our model. The field sites themselves
are described in the next section. All four field sites have a geodetic-quality choke-ring GPS
antenna and Trimble NetRS receiver, which collects daily SNR data for each satellite pass.
Antennas are identical across sites, though their radiation patterns may vary to some degree,
which introduces some small but tolerable uncertainties into our analysis.

On any given day at any site, we used between 8-10 satellite tracks for our analysis of
GPS metrics. We used only southern-ascending tracks for our analysis. There were thus
between 8-10 satellite tracks with SNR data from which we estimated phase, amplitude, and
effective reflector height using procedures described in Section 2. These values were averaged

to give one daily phase, amplitude, and reflector height estimate for each site. Standard
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deviations of the measurements were also calculated and are shown as error bars in our
analyses. Differences in GPS metrics between satellite tracks on one day result from a
combination of spatial heterogeneity (satellites rise and set over different areas near the
antenna), temporal differences (satellites pass over the antenna at different times of the day),
and random noise.

Comparing SNR data across sites necessitated first either normalizing or zeroing each of
the three metrics. The magnitude of amplitude is not only affected by soil moisture and
vegetation, but also by the satellite transmit power (which is different for each satellite) and
the temperature of the receiver. For example, the largest amplitude at the soybean site is
different than the largest amplitude at the rangeland site for technical reasons, not because the
soil moisture or vegetation conditions differ. To mitigate this issue, we normalized amplitude
for each site by dividing each daily-mean amplitude value by the maximum daily-mean
amplitude observed at that site. Thus, each site’s normalized amplitudes range from 0 to 1,
instead of 15-18 volt/volt or 12-16 volt/volt, etc. Because the height of the GPS antenna is
different for every site, we only looked at deviations from the a priori reflector height. Phase
was zeroed at each site. For example, a phase range of 200-300 degrees was reported as 0-100
degrees.

3.3 Vegetation and Soil Moisture Field Data

In order to both validate our model with real data and constrain our model simulations
to realistic vegetation conditions, we used field data collected from four sites: an agricultural
soybean field in lowa, an agricultural alfalfa field in Colorado (Fig. 4), a grazed grassland in

Oklahoma, and a desert steppe site in Colorado. These sites were selected for this study

14



because together they represent a wide range of vegetation types, canopy heights, and
vegetation water contents. Table 1 contains a summary of the vegetation parameters at the
four sites. All four sites are nearly flat — surface elevation varied by less than 0.5 m within the
GPS sampling footprint. This allowed us to compare the observed data to model simulations in
which the area around the antenna is flat.

In addition to the GPS installation common to all sites (described in the previous
section), we installed Campbell Scientific 616 soil moisture probes in the vicinity of each
antenna: 5 probes were buried at 2.5 cm depth, 5 at 7.5 cm, and 2 at 20 cm. Probes give
estimates of soil moisture every 30 minutes. For model validation, we average the probe
estimates at each depth for one day, so that we have daily estimates of soil moisture at the
specified depths.

During the growing season, vegetation measurements were taken at each site. At the
alfalfa, rangeland, and desert steppe site, measurements were taken approximately every
seven days. At the soybean site, measurements were taken every 2-3 weeks throughout the
growing season.

Each vegetation measurement included seven samples at random locations within 50 m
of the GPS antenna. At each sample location, a 50 x 50 cm grid was thrown on the ground.
Canopy height was measured, and all plant material within the grid was cut and weighed. This
value was used as vegetation wet weight. The vegetation was subsequently dried in an oven at
50°C for at least 48 hours and weighed again, yielding vegetation dry weight. Measurements at
the soybean field followed a different sampling procedure, but we were able to convert the

measurements to our data format. We thus obtained measurements of canopy height, biomass
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(dry weight of vegetation), wet weight (total weight of ‘wet’ vegetation), and gravimetric
moisture (weight of water contained in the vegetation divided by the wet weight).
4. Model Validation

For model validation, we used field vegetation and soil moisture data from the four sites
as model input. Each vegetation sample for one day was considered to be a separate model
input. Thus, each validation point had seven different model simulations, which differed in
vegetation parameters. Soil moisture was the daily average value at each depth as described
above and was the same for all seven model runs for each day. We averaged phase, amplitude,
and reflector height for these simulations and calculated the standard deviation of the metrics.
We show the standard deviations as error bars in our validation analysis. These error bars thus
represent the variability of model output depending on the spatial variability of real field
conditions. Analysis of observed GPS data for model validation is addressed in Section 3.2.

Our results show that the model successfully simulates SNR data for both bare and
vegetated conditions. Two examples of observed and modeled SNR data are shown in Fig 5. The
observed SNR data are from one satellite track—different satellite tracks would produce slightly
different SNR data. The modeled SNR data were produced using soil moisture and vegetation
parameters sampled on the same day as the observed data. The model is able to reproduce the
amplitude variations with elevation angle that result from the presence of vegetation. The
decrease in overall amplitude with the addition of vegetation is also successfully simulated. The
simulation of a gradual canopy top (red SNR curve in the figure) introduces only small changes
with respect to the homogeneous vegetation layer (blue SNR data). In addition, the SNR data

simulated with the gradual canopy top does not match observations.
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The modeled and observed periodograms are similar (Figure 5), although the match is
not as close as for the SNR data. In particular, the maximum power of the periodogram is less in
the observed data than modeled data, for both bare soil and vegetated conditions. This could
be a result of colored noise in the observations, due to terrain effects in real environments, or
differences in the modeled and observed transmitted power or antenna gain pattern.

Modeled SNR estimations of phase, amplitude, and effective reflector height show good
agreement with those observed in the field (Fig.6). For all three relationships, the simulated-
observed pairs fall close to the 1:1 line. Figure 6 shows how amplitude changes as vegetation
grows, similar to what is shown in the time series in Figure 2. Highest values of normalized
amplitude correspond to either (1) the sites with the least vegetation (steppe/rangeland); or (2)
the agricultural sites at times in the year when there was little vegetation present. Both
simulated and observed amplitude values are less than 0.4 during peak growth at the soybean
and alfalfa site. In Figure 6, low values of phase correspond to maximum vegetation. Phase
variations for rangeland and steppe sites are limited to 50 degrees on all dates. The greatest
range of phase shift is simulated and observed at the alfalfa site (200 degrees). Figure 6 also
shows that effective reflector height, for the most part, does not change significantly
throughout the growing season. Only large changes are seen at the alfalfa site, and the model
simulates this as well.

Error bars for some validation points are quite large. Large vertical error bars represent
the standard deviation of retrievals for all satellite tracks on one particular day. Because
satellites rise and set at different times during the day and over different areas near the GPS

antenna, each satellite retrieval will be inherently different due to spatial and temporal
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variability. Large horizontal error bars represent the standard deviation of model output for a
given day. Because vegetation at some sites varies spatially, the field data yields very different
inputs to the model, so it is expected that the model outputs should vary considerably,
especially for the rangeland and steppe sites.

Calculated SNR metrics from modeled data with a gradual canopy top did not differ
significantly from the homogeneous canopy, thus we do not show these results.
5. How GPS metrics respond to change in vegetation

We now analyze how GPS metrics should respond to changes in vegetation extent. We
no longer used each field sample as model input, as was used for validation of the model in the
previous section. Instead, we used field data to derive relationships between vegetation wet
weight and height and vegetation wet weight and dry weight for each of the four sites. This was
done using a linear regression of field data. Thus, although we report our results in terms of wet
weight, relationships would be the same for canopy height and dry weight as well, since heights
were assumed to be linearly proportional to wet weights. In general, the regressions showed
good relationships between wet weight, dry weight, and height. The only exception was the
rangeland site, which had an r? value between height and wet weight of only 0.15, which we
attribute to the sparse and inhomogeneous vegetation at the site. Otherwise, r* values for wet
weight and height or wet weight and biomass were greater than 0.5, with the agricultural sites
having the highest r® values. We also used the average vegetation percent water content for
each site for each simulation, even though Table 1 shows significant variations. Sensitivity of
SNR metrics to percent water content is investigated below. We also assumed that the density

of plant matter was directly proportional to its percent water content. Thus, if the sample was
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75% water on a wet weight basis, this translated to a density of 750 kg m™. Obviously, these
relationships are generalized and not descriptive of every plant canopy. However, by including
multiple sites with different canopy water contents and relationships between field
parameters, we consider our analysis to encompass the majority of non-forested vegetation
canopies.

For each site, we increased the modeled vegetation wet weight from 0 kg m™? to 4 kg m’
2 even though the rangeland and desert steppe site would never realistically have this much
vegetation. For these two sites, we extrapolate values out to 4 kg m™ using the same linear
regressions from field data as described above. For relative scale, a field of corn could contain
in excess of ~6 kg m? of vegetation material [4] whereas a typical grassland would average
around 0.4 kg m™ [39]. For each modeled canopy, we varied soil moisture between 0.05 and
0.40 cm?® cm™ to quantify how soil moisture could influence the ability of an SNR metric to
sense changes in a vegetation canopy. We then estimated phase, amplitude, and effective
reflector height for each model simulation. For our model simulations, we kept the height of
the antenna at 2.4 m for all four sites.

The relationship between SNR metrics and vegetation wet weight for the four sites,
given a dry underlying soil (SMC = 0.05), is shown in Fig 7. For these sites, the realistic
vegetation wet weights are shown by the solid line, and extrapolated relationships are shown
by the dashed line.

As Figure 7 illustrates, both phase and amplitude decrease in a mostly linear fashion as
vegetation wet weight increases, until about 1 kg m™. Once the wet weight of vegetation has

exceeded this value, there is no clear relationship between these two metrics and wet weight.
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Furthermore, the complex relationship past 1 kg m™ also becomes site dependent. The
simulated differences between sites are due to the site-specific relationships between height,
vegetation water content, and density. Effective reflector height oscillates with increasing wet
weight and is also site dependent. From this analysis alone, it appears that either phase or
amplitude could be used to predict changes in vegetation wet weight up to 1 kg m™. Past this
value, the relationship between wet weight and these two metrics has less predictive value.

The effects of both soil moisture and vegetation wet weight on GPS metrics for the four
sites are shown in Fig. 8. In this figure, we did not extend our analysis out to 4 kg m™ for the
rangeland and the steppe sites. We did this to clarify the role that soil moisture plays in
estimating vegetation wet weight. In this figure, the solid line indicates the response of metrics
to vegetation with a saturated underlying soil (SMC = 0.40). The dotted line indicates the
response of metrics to vegetation with a dry underlying soil (SMC = 0.05), equivalent to what is
shown in Fig. 7. The shaded region thus indicates the effect of soil moisture on metrics for a
given vegetation canopy.

This analysis shows that once soil moisture is allowed to vary, phase is no longer a
robust indicator of vegetation change for low vegetation extents (wet weight < 1 kg m™). At low
vegetation extents, phase is nearly as sensitive to changes in soil moisture as it is to changes in
vegetation. The potential error in estimating vegetation from phase alone is thus large (on the
order of 0.5 kg m™) if soil moisture is unknown. Similarly, estimating soil moisture when
vegetation wet weight is unknown would introduce significant error. This error has two
components: (1) vegetation affects phase; and (2) the sensitivity of phase to soil moisture

depends on the overlying vegetation canopy. The arrows in Figure 8 show that this relationship
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is complex, in particular the sensitivity of phase to soil moisture does not simply decrease with
increasing vegetation. Although the sensitivity changes, the relationship between phase and
soil moisture at a specific vegetation wet weight is nearly linear. Thus, the most accurate soil
moisture estimations would require first estimating vegetation amount, and then applying the
relationship between phase and soil moisture for the estimated vegetation state.

Amplitude, however, is not as sensitive to soil moisture changes. This was also shown in
[21] for a modeled bare soil. Thus, for low vegetation extents (wet weight < 1 kg m™), it is
possible to use amplitude as a proxy for vegetation change. There is still uncertainty associated
with this metric due to soil moisture, on the order of 0.1 — 0.2 kg m™. For low vegetation wet
weights, such as at the steppe site, this uncertainty could translate to an over- or under-
estimation of vegetation of up to 20%.

Figure 8 shows, as in the previous figure, that effective reflector height is not a good
indicator of vegetation change. This is despite the fact that soil moisture has a negligible impact
on reflector height as compared to the effect from vegetation. The oscillatory effects seen in
reflector height for some vegetation canopies are not due to errors in the Lomb-Scargle
periodogram. Rather, once vegetation extent is high, the dominant peak in the periodogram is
hardly distinguishable from other, smaller peaks. Thus the peak power will sometimes be
contained in a peak at one frequency and at other times in a peak at a different frequency. This
causes the apparent jumps in effective reflector height. This should be interpreted as the SNR
data no longer having one distinguishable frequency. We explain and quantify this effect

further in Section 6.

21



Previous GPS-IR studies used 5-30 degrees in the estimation of phase and amplitude.
However, because reflection coefficients are dependent upon elevation angle and should be
highest at grazing (low) angles, it is reasonable to assume that certain elevation angles are
more sensitive to changes in vegetation than others. We used the model and field data to see
whether restricting amplitude analysis to 5-15 degrees would improve its relationship with
vegetation wet weight. For this analysis, we chose to do a linear interpolation between the
vegetation field samples for the soybean site since there were only five original sample points.
This interpolation was justified due to the monotonically increasing relationship over time seen
in field data (see Fig. 2a for this relationship).

In general, the model indicated that using 5-15 degrees would actually be worse in
vegetation estimation than using 5-30 degrees (Fig. 9a). This is because, even though the
magnitude of amplitude change throughout the growing season was greater using 5-15
degrees, the relationship with wet weight was even more non-linear. This effect is seen both in
field and modeled data (Fig. 9). For comparison, the analogous model and field results using 5-
30 degrees are shown in Fig. 9c-d. These data indicate that using 5-15 degrees for amplitude
estimation does not increase the potential of this metric to successfully model changes in
vegetation past 1 kg m™ of wet weight. There are significant differences in the relationship
between wet weight and modeled results. For example, the first notable dip in amplitude
occurs at 1 kg m™ in the model but at 0.7 kg m™? in real data. These differences arise from the
simplifications made in the model as well as errors in field sampling, which are explained in the

beginning of this section. We tried other elevation angle ranges, and all yield similar results to
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those shown. We conclude that there are no distinct advantages to using a more restricted
elevation angle range than 5-30 degrees.
6. Quantifying when the constant frequency model is appropriate

Phase and amplitude estimates using the constant frequency model of (1) are only valid
if the frequency of the SNR curve is approximately equal to the height of the antenna, or the ‘a
priori reflector height.” Figure 10 (b,d) shows that this is not the case for highly-vegetated
environments, nor is the effective reflector height always close to the height of the vegetation.
As vegetation grows, the following may happen:

1. The dominant frequency shifts away from the a priori reflector height (shifting).

2. The dominant frequency becomes less powerful in relation to other frequencies
(spreading and dampening). Conversely, other frequencies become more powerful in
relation to the bare soil frequency.

Together, these two effects lead to errors in estimation of phase and amplitude and
ultimately a mischaracterization of the SNR curve. Figure 10 (a,c) shows modeled SNR curves
overlain by the curve generated using the constant frequency model of (1) and the least-
squares estimates of phase and amplitude. We refer to this data as the reconstructed data. It is
apparent that least-squares estimation fails when the SNR data is not adequately described by
(1).

We describe how the constant frequency model begins to mischaracterize the SNR
curve as vegetation extent increases using two general methods. First, we look at two different
metrics that characterize how the Lomb-Scargle peak frequency (effective reflector height) and

its power change as vegetation extent increases. These metrics include the fraction of power in
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the periodogram that remains near the antenna height/bare soil frequency as well as the
fraction of power in the dominant periodogram peak.

The shifting and spreading of the frequency of the SNR data as vegetation water content
increases are shown in Figure 11a and b. Figure 11a shows how much power of the Lomb-
Scargle periodogram is still at or near the effective reflector height for a bare soil, as a function
of vegetation wet weight. This shows the effect of the dominant frequency(cies) shifting. Figure
11b shows how much power is contained within the dominant frequency peak within the
periodogram, as a function of vegetation wet weight. This shows the spreading and dampening
effect that vegetation has on the frequency of the SNR curve.

Second, we calculate the r* value between the actual SNR data and the reconstructed
data as a measure of misfit between the two. We report results using both modeled SNR data
as well as ones from field data.

The mean r? value for the relationship between the actual and reconstructed SNR data is
shown in Fig. 12. It is apparent that once vegetation wet weight increases beyond 1 kg m™, the
misfit between the actual and ‘reconstructed’ data increases dramatically, shown by a much
lower r* value. This may help explain why neither phase nor amplitude show a clear relationship
between increases in vegetation wet weight beyond this value. Thus, phase and amplitude
estimates for vegetation exceeding 1 kg m™ should not be expected to be representative of
their corresponding SNR curves.

7. Conclusions:
An electrodynamic forward model developed and validated in this study reproduces

basic changes in GPS SNR data associated with vegetation canopies. This includes changes in
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SNR amplitude at different elevation angles, changes in the pattern of the Lomb-Scargle
Periodogram, and changes in SNR metrics. These changes were well simulated across a range of
vegetation wet weights at four field sites.

The vegetation model shows that, once vegetation canopy wet weight exceeds 1 kg m?,
SNR phase and amplitude (estimated using 5-30 degrees) alone cannot be used to reliably
retrieve vegetation parameters. Effective reflector height is never a consistent or reliable
indicator of vegetation change. Using data from lower elevation angles, such as 5-15 degrees,
does not improve the capability of amplitude to sense vegetation change when vegetation
extent is high.

When vegetation wet weight is below 1 kg m?, it could be possible to estimate wet
weight using phase or amplitude, if surface soil moisture is known. When it is not known,
amplitude is the only reliable metric to use to estimate vegetation wet weight. Still, the error
introduced from unknown soil moisture could be on the order of 0.1-0.2 kg m™. For vegetation
canopies that are less than 1 kg m?, this translates to an error of 10-20%. However, if the goal is
to compare vegetation across sites, this error is small.

A vegetation canopy can decrease the presence of one dominant frequency in the SNR
curve, and so the constant frequency model that is used to estimate phase and amplitude fails
to adequately characterize the SNR curve when there is significant vegetation cover. There is a
sharp decrease in the constant frequency model’s ability to characterize the SNR curve once
vegetation wet weight exceeds 1 kg m™. Thus, a method that could quantify or include variation
of frequency with elevation angle and the growth of vegetation would likely be more successful

at describing changes in the vegetation canopy. The development of such a method or the use
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of an inverse procedure should be the subject of future efforts if we wish to successfully
guantify high vegetation extent using SNR data.
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Figures

Figure 1: Geometry of a multipath signal, for antenna height (H,) and satellite elevation angle
(E). Bold black lines represent the direct signal transmitted from the satellite. The gray line is
the reflected signal from the ground. The antenna’s phase center is shown as the small dot. The
blue line (higher gain) represents the RHCP gain of the antenna. The red line (lower gain)
represents the LHCP gain of the antenna. The radial distance between the antenna phase

center and the solid line represents the strength of the antenna gain, in dB.
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Figure 2: Black lines indicate data retrieved when ground was bare. Green lines indicate data
retrieved when ground had 2.5 kg m-2 of vegetation present. Data is from the soybean site. (a)
SNR data from one satellite on two separate days. Data still has the direct component. (b) Same
SNR data as from panel a., but with the direct component removed and transformed to a linear

scale. (c) Lomb-Scargle periodograms indicating the frequency content of SNR curves in panel b.
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Figure 3: (a) Time series of data for the soybean field in 2012. Top panel is the average and
standard deviation of SNR amplitude for all satellites on a given day (black dots) with the model
simulations using field data as input (green dots). Below are measurements of canopy height,
vegetation wet weight, and 0-5 cm average soil moisture, respectively. (b) Same as panel a.,
except for the desert steppe site in 2011. Note the scales of the y-axes for field data between

the panels are not the same.
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Figure 4: Photo from the alfalfa field in Colorado, showing the GPS antenna, receiver box, and

solar panel typical of all field sites in this study.
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Figure 5: (a) Black line is SNR data from one satellite passing over the soybean site when ground
was bare. Blue line is one modeled representation with a soil moisture of 0.15, using field

inputs from the same day as the observed data. (b) Same as in a., except for when the
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vegetation was at its maximum extent (vegetation wet weight 2.5 kg m-2). The red line uses the
same field inputs as the blue line, except also with a gradual canopy top that begins to thin out
at 90% height. (c) Corresponding Lomb-Scargle periodograms for the curves in a. (d)

Corresponding Lomb-Scargle periodograms for the curves in b.
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Figure 6: Modeled versus observed estimations of (normalized) amplitude, phase, and effective

reflector height for the four sites. Dashed lines are 1:1 relationships.
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Figure 8: Relationship between vegetation wet weight and SNR metrics for the four sites, with
varying underlying soil moisture. The dashed line represents a soil moisture value of 0.05. The
solid line represents a soil moisture value of 0.40. The grey area is thus the variation of metrics
possible due to soil moisture, for a given vegetation canopy. As the arrows in the top right plot
indicate, the sensitivity of phase to soil moisture depends on the amount of overlying

vegetation. Corresponding arrows are not included in the other plots in the top row for clarity.
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Figure 9: The relationship between vegetation wet weight and amplitude, calculated using an
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and (c) are modeled using relationships from the soybean site. These panels also show the
range of responses of amplitude due to different underlying soil moisture, in accordance with
Figure 8. Panels (b) and (d) are real, interpolated vegetation data from the soybean site. Dots

for the observed data are color coded by relative soil moisture, with lighter values indicating

dryer values.
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Figure 10: (a) A modeled curve with vegetation wet weight = 0.9 kg m? (black) and the
‘reconstructed’ curve (red) generated using the constant frequency model and SNR metrics
estimated from the black curve. A modeled curve for bare soil is in grey for reference. (b) Lomb-
Scargle periodogram (black) for the simulated curve in panel a. The antenna height is the
dashed line, and the distance between the antenna and the canopy top is the dash-dotted line.
The grey periodogram is for the bare soil curve in panel a. (c and d) Same as in panels a. and b.,

except for vegetation wet weight = 3.6 kg m™.
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Figure 11: (a) As vegetation wet weight increases, the amount of power in the Lomb-Scargle
periodogram at the bare soil frequency decreases. Black line is the average relationship for all
sites (normalized with respect to the maximum value). (b) As vegetation wet weight increases,

the power contained in the dominant peak of the Lomb-Scargle periodogram decreases.
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deviation calculated using observed data from field sampling days for all available satellite

tracks.
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Table 1: Vegetation parameters for the four sites. Measured parameters were taken from field
data. Antenna height is reported using the mean reflector height during low vegetation time
periods for several satellites. The reported standard deviation is not used in this study but
illustrates the extent of variation. Field data showed, for some sites, a wide range of % water
contents. However, we used the reported mean % water content in permittivity estimation.
Estimated parameters were assumed to vary directly with measured parameters. Calculated
parameters were the result of the permittivity model in [35]. For reference, the permittivity of

air is 1.0, and the real permittivity of dry snow is approximately 1.48 [40].

Site Antenna Veg Wet weight | Biomass Range % | Mean Density Permittivity
Height Height (kg m-2) (kg m-2) water % water | (kg m-3)
(m) (cm)
Measured Estimated | Calculated

Soybean 2.96 +/- 0-105 0-4 0-1.1 67-83 72.5 725 1.050+0.012i
0.09

Alfalfa 2.69 +/- 0-80 0-5 0-0.9 59-89 74 740 1.080 + 0.019i
0.15

Rangeland 2.72 +/- 0-61 0-1.6 0-1.22 4-55 24 240 1.030+0.012i
0.06

Desert steppe | 1.96 +/- 0-32 0-0.7 0-0.32 8-83 54 540 1.029+0.008i
0.03
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