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subsequent self-coagulation of TSCs is able to grow TSCs to a
detectable size. A nucleation rate of 50±100 cm-3 s-1 is needed to
explain the observed number concentrations. As the ionization rate
under typical tropospheric conditions is of the order of 1±5 ion
pairs cm-3 s-1 (ref. 25), we can rule out ion-induced nucleation as a
probable aerosol formation route. If there exist pathways other than
ternary nucleation of H2SO4-NH3-H2O, they should occur as easily
as the ternary one. However, additional condensable vapours will
still be required to activate TSCs to detectable sizes and further to
cloud condensation nuclei. M
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The collision between India and Asia has been simulated with a
variety of computational models that describe or predict the
motions of the main faults of east Asia. Geological slip-rate
estimates of 20±30 mm yr-1 suggest that the largest of these
faults, the 2,000-km-long Altyn Tagh fault system on the northern
edge of the Tibetan plateau, absorbs as much of the Indo-Asian
convergence signal as do the Himalayas1,2Ðpartly by oblique slip
and partly by contraction and mountain growth3±5. However, the
predictions of dynamic models for Asian deformation6 and the
lower bounds of some geological slip-rates estimates (3±9 mm yr-1;
refs 7, 8) suggest that the Altyn Tagh system is less active. Here, we
report geodetic data from 89±918 E that indicate left-lateral shear
of 9 6 5 mm yr 2 1 and contraction of 3 6 1 mm yr 2 1 across the
Altyn Tagh system. This resultÐcombined with our ®nding that,
at 908 E, Tibet contracts north±south at 9 6 1 mm yr 2 1 Ðsup-
ports the predictions of dynamic models of Asian deformation.

In kinematic views of the Indo-Asian plate collision, India's
northward motion is absorbed by slip on a small number of
active faults bounding major structural units in the collision
zone4,9,10. The blocks of continental crust between these major
faults are usually modelled as elastic; they deform only in the
sense that slip on smaller faults within them may permit slow
thickening, or other relatively minor, inelastic changes of shape of
each block9,11,12. In contrast, dynamic models of Asian deformation
(models that recognize collisional forces and inferred viscous and
elastic properties of the blocks) anticipate deformation throughout
the crust and upper mantle13,14. Geodetic data provide present-day
constraints for these models, both in the form of estimates of the
translation, rotation and deformation of crustal blocks, and also in
the form of independent estimates of the rate of shear strain applied
to intervening faults. The geodetic surveys discussed here lie
between longitudes 868 and 928 E across the Altyn Tagh fault and
extend southward to India and northward to the Tien Shan. The
absence of perturbations to the surface strain-®eld from recent
earthquakes of magnitude M . 7 on the Altyn Tagh fault at this
longitude permits us to infer the current slip-rate on the fault from
the rate of shear strain centred on the fault. Levelling data record
relative elevation changes of 57 buried bench-marks spaced at
intervals of 4±10 km. Benchmarks north of the Altyn Tagh fault
were measured in 1957 and 1979; those south of the fault were
measured in 1963 and 1979 (Fig. 1). The Global Positioning System
(GPS) data include 13 control points on rock or concrete markers set at
variable distances on a 300-km-long linear array across the fault.

The levellingdata (Fig. 1) showa maximum uplift rate of 3 mm yr-1

near the northern edge of the mountains relative to points in the
Tarim basin. Although a short-wavelength vertical-velocity ®eld
peaking at 1 mm yr-1 is evident on a N308W fold belt south of the
Altyn Tagh fault, no uplift occurs near the fault. We estimate a
maximum vertical-velocity uncertainty in these data to be 1±
2 mm yr-1 (Fig. 2) from a combination of random15 and systematic
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errors. The absence of a signi®cant correlation between slope and
tilt-rate (Fig. 3) suggests that height-dependent errors are small. The
GPS data (Table 1) were obtained as multiple 8-h sessions in 1994
and as multiple 12-h sessions in 1998 using dual frequency GPS
receivers. A point at Urumqi (URUR) operated continuously during
each survey and a minimum of two local stations were operated
concurrently to provide short local baselines. Data from the Altyn
Tagh network, plus data from ®xed stations at Urumqi, Shanghai
and Tsukuba were processed using the GIPSY/OASIS software16.
Computational uncertainties are approximately 62.4 mm yr-1 east
and 61.7 mm yr-1 north. With the exception of one outlier (PAXI,
that we omit from consideration because its motion exceeds the
displacement vectors of four neighbouring points by 2j), the
maximum fault-parallel velocity is 10 mm yr-1 in a left-lateral
sense relative to the mean position of points southeast of the
fault, and the maximum fault-normal horizontal velocity is less
than 3 mm yr-1. The measured convergence vector across the Altyn
Tagh fault is normal to the strike of east±southeast-trending folds
south of the fault.

We assume that aseismic creep at depth is responsible for the
observed surface velocity ®elds. If we assume further that they are
generated by creep processes on single dislocations, or on relatively
narrow zones of concentrated shear at depth, we may estimate the
geometry and rate of slip of these surfaces using elastic dislocation
theory17. The observed maxima in the vertical and horizontal
surface-deformation ®elds are separated by more than 50 km
and we model each ®eld separately. The fault-parallel horizontal-
velocity ®eld in Fig. 2 can be emulated by slip on a vertical, buried
two-dimensional fault slipping at rates of 9 6 5 mm yr 2 1 at locking
depths of 8±36 km (1j). The uncertainty in the rate and locking-
depth is derived from the weighted mis®t of the model to the data
(Fig. 4).

The vertical deformation ®eld may be modelled with the same
elastic dislocation theory using a reverse fault, sub-parallel to the
Altyn Tagh fault dipping southwards. Dislocation geometries that
emulate the vertical-velocity ®eld consist of slip at 5 6 1 mm yr 2 1

on 30 6 208 SE dipping planar faults with lengths of 30±100 km

Figure 1 Deformation of the Tibetan plateau. a, GPS displacement vectors, and vertical

velocities from spirit-level measurements, superimposed on relief map of the northern

edge of the Tibetan plateau illuminated from the north. GPS velocity vectors relative to a

point (TERR) 5 km south of the Altyn Tagh fault; vertical velocities relative to the

southeastern end of the levelling line (see Fig. 2b for uncertainties). b, GPS velocities of

points between India and Tien Shan relative to Eurasia (largest vector 33 mm yr-1).
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Figure 2 Sections at N108 W across the Altyn Tagh system. a, Topographic section

normal to the Altyn Tagh fault at 908 E with observed and synthetic velocity ®elds

projected normal to fault. b, Vertical velocities from levelling. c, Fault-normal velocities.

d, Fault-parallel velocities from GPS geodesy. Uncertainties in the levelling data are

relative to the southeastern end of the line, and uncertainties in the GPS data are shown

relative to MANG. A range of inferred dislocation geometries that emulate the vertical

velocity ®eld northwest of the Altyn Tagh fault are shown with representative velocities and

dips. Satisfactory (1j) combinations of geometry and slip rate are identi®ed in Fig. 4.
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starting at a depth of 10±20 km, and with a surface projection
intersecting the northern edge of the mountains. A tradeoff exists
between dip and slip-rate such that the range of acceptable models
result in 3 6 1 mm yr 2 1 of surface convergence (Fig. 4), consistent
with the observed fault-normal GPS contraction of 2:56
1 mm yr 2 1. A common feature of these dislocations is that they
must terminate down-dip, close to the vertical Altyn Tagh fault. The
data are inconsistent with active dislocations that extend south of
the Altyn Tagh fault, or with slip on curved surfaces.

A surprising result indicated by the 50-km separation of the
maxima in the convergent and strike-slip strain ®elds, is that strain
partitioning occurs aseismically below mid-crustal levels. In some
models for partitioning, frictional conditions in the seismogenic
crust control the separation of slip into dip-slip and strike-slip
components18,19. Our data suggest that partitioning processes are
not restricted to the brittle crust, but we cannot distinguish between
a mechanism where stresses driving aseismic slip are localized here
by shallow seismic processes, or whether lower-crust partitioning is
responsible for the stress distribution that drives shallow earth-
quakes. Stresses leading to strain-partitioning north of the fault are
evidently similar in orientation to those responsible for folding on
east-southeast axes south of the fault (Fig. 1).

The slip rate of the Altyn Tagh fault inferred from the geodetic
data (Fig. 5) is 2±4 times lower than that inferred from the offset of
Holocene post-glacial features3 and from 14C dating of 6 kyr BP

morphological features offset by the surface fault5. Although the
GPS data may be questioned for their low signal-to-noise ratio
(4:1), we note that the slow slip rate is largely responsible for this low
ratio. We believe that systematic control-point instability does not
arti®cially lower our GPS estimate because the fault-normal GPS
data are consistent with the fault-normal contraction rate inferred
independently from the levelling data. Moreover, our slow slip-rate

on the Altyn Tagh fault is consistent with comparable slow con-
vergence across the eastern edge of the Tibetan plateau20 and with
the net velocities of Altyn Tagh displacements relative to Eurasia (see
inset to Fig. 1). These velocities were derived by adding velocities
relative to Lhasa to the velocity of Lhasa relative to Eurasia21, and
correcting for the rotation of Eurasia in the GPS frame of reference.
In this Eurasia-®xed projection, sites southeast of the Altyn Tagh
fault have a small eastward motion relative to Eurasia
(5 6 3 mm yr 2 1), while sites northwest of the fault have a small
westward motion with similar rate.

At 87±918 E, contraction between northern India and Urumqi in
the northern Tien Shan amounts to 33:5 6 5 mm yr 2 1, of which
20:3 6 3 mm yr 2 1 occurs across the Himalaya22, 9 6 2 mm yr 2 1

across Tibet, 2:5 6 1:5 mm yr 2 1 across the Altyn Tagh system and
2 6 3 mm yr 2 1 across the southeastern Tien Shan. Thus, in contrast
to some interpretations of Asian kinematics in which the Altyn Tagh
fault absorbs one-third of the entire Indo-Asian convergence signal,
the system apparently absorbs less than 10%. The minor contrac-
tion we ®nd in the eastern Tien Shan at 908 E, when compared with
the inferred 20 mm yr-1 north±south contraction of the western
Tien Shan23, requires the Tarim basin to rotate clockwise relative to
Eurasia at approximately 18 per Myr, a rate that must apply also to
the clockwise rate of change of strike of the Altyn Tagh fault24.

Although the geodetic slip rate and convergence on the Altyn
Tagh system reported here is interpreted in the context of the

Table 1 Coordinates and velocities of GPS points relative to MANG

Site Latitude
(8N)

Longitude
(8E)

Slip rate north
(mm yr-1)

Slip rate east
(mm yr-1)

.............................................................................................................................................................................

URUR 43.81424 87.7051 2 1:6 6 2:8 2 3:3 6 1:2
KULA 41.81643 86.19112 1:4 6 5:0 2:1 6 2:2
LOBU 39.44595 88.26519 2 5:0 6 3:5 2 1:2 6 1:6
MILA 39.24141 88.89869 2 7:6 6 3:2 2 3:7 6 1:5
KUMU 38.84900 89.14083 2 8:4 6 3:3 2 4:4 6 1:5
PAXI 38.61399 89.28199 2 14:9 6 3:5 2 12:6 6 1:6
NICE 38.46829 89.63004 2 8:5 6 4:4 2 3:6 6 1:9
KLSA 38.40933 89.90475 2 3:2 6 3:4 2 0:9 6 1:5
SCAN 38.40854 89.92951 2:7 6 4:6 2 3:0 6 2:2
SCAS 38.40388 89.93227 2 4:7 6 5:3 2 1:4 6 2:9
HAPI 38.39144 89.96822 2 4:9 6 3:4 2 0:9 6 1:5
TERR 38.39113 90.08462 2 1:4 6 2:9 0:6 6 1:2
MULI 38.37611 90.41844 2 1:2 6 3:2 2 0:3 6 1:5
HATU 38.28494 90.90676 2 2:9 6 3:1 2 1:6 6 1:4
MANG 37.88704 91.82126 0 0
.............................................................................................................................................................................
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localized deformation implicit in kinematic reconstructions of
Asian tectonics, models that incorporate Altyn Tagh slip rates
faster than 15 mm yr-1 are inconsistent with recent GPS data. The
absence of a closer agreement between current GPS rates and slip
rates averaged over many thousands of years is puzzling, and if we
assume each estimate to be free from error, would require a secular
slowing in slip rate. The low rates reported here support the view
that Tibet is currently not being extruded rapidly to the east13,25 and
requires a larger portion of Indo-Asian convergence to be absorbed
by faults elsewhere, or by internal deformation of structural units in
Asia. Our ®ndings of a low rate of shear strain on the northern
margin of Tibet, and slow northward contraction and eastward
extension26 of the Tibetan plateau at a strain of approximately
10-8 yr-1 are similar to those predicted by dynamic models for Indo-
Asian convergence. M
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Estimates of species extinction due to human impact on tropical
forests have previously been based on the relationship between
species number and area1. Here we use a different approach to
estimate loss of tree species in the Atlantic forest of northeast
Brazil. We evaluate the characteristics of plant species, their avian
dispersers and the distribution of the forest remnants on the
landscape to estimate that about 33.9% of tree species in this
region will become extinct on a regional scale. Because northeast
Brazil is the most threatened sector of South American Atlantic
forest2, our results highlight the need to change the current
conservation paradigm for this region. Rather than focus on the
creation of isolated reserves in any medium-to-large forest rem-
nant, a bioregional planning approach is urgently required to
rescue this unique biota from extinction.

The Atlantic forest of northeast Brazil includes all forests located
north of the River SaÄo Francisco. This 35,625.92 km2 region has
been identi®ed as an important area of endemism in South
America3,4. Its biota is in¯uenced by the Amazonian region,
making it very distinctive from other sectors of the Atlantic
forest4. In northeast Brazil, most of the Atlantic forest has been
converted into agricultural land, with only 2% of the original forest
remaining5,6. Forest remnants are dispersed as small patches sur-
rounded by open ®elds6. Protected areas in this region are mostly
small, isolated and badly managed2. Also, hunting pressure on the
fauna of these fragments is very high7.

Tropical forests distributed in similar landscapes to northeast
Brazil are losing plant species through the disruption of key
ecological processes such as pollination and seed dispersal8. How-
ever, no estimates of the number of threatened plant species have
been made. Pollination and seed dispersal are critical because they
directly affect the reproductive success of plants, and in tropical
species they usually involve direct interaction with animals9,10. Thus,
habitat loss affects tree species through its effects on the plants
themselves, on their pollinators and dispersers, or on both11.

We recorded 427 tree species in the Atlantic forest of northeast
Brazil. A total of 305 (71.4%) species were dispersed by vertebrates
(mostly birds and mammals). Species classi®ed as dispersed by
abiotic factors represented 28.5% (122) of the total pool. We
obtained data about niche regeneration for 289 species dispersed
by vertebrates. Most of these (206) had fruits smaller than 15 mm. In
this group, 101 (49.0%) were shade-intolerant and 93 (45.1%) were
shade-tolerant species. This difference is not signi®cant (x2 � 0:33,
P , 0:05). However, of the 95 vertebrate-dispersed species with
fruits larger than 15 mm, there were signi®cantly more species
classi®ed as shade-tolerant (66) than shade-intolerant (25)
(x2 � 18:15; P , 0:002).

A total of 78 fruit-eating birds were recorded in the region. Of
these, 59 had gapes narrower than 15 mm and 19 had gapes wider
than 15 mm. This difference is signi®cant (x2 � 19:7; P , 0:05). Of
the species with narrow gapes, most of them (31) were edge rather
than forest (28) species, but this difference is not signi®cant
(x2 � 0:15; P . 0:05). A different pattern is found among species
with gapes wider than 15 mm, where there were signi®cantly more
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