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Fig. 6. MP; data for site P048 and satellite 1: (a) rising arc (northwest azimuths), (b) setting arc (southwest azimuths), (c) lowest elevation angle data from panel A
(shown in gray), (d) lowest elevation angle data from panel (b). Data in (c) and (d) are vertically offset to show data from both late (blue) and early (black) spring.

Note also that ¢4 and the carrier phase multipath terms have been
dropped. This is because they are 1-2 orders of magnitude
smaller than the equivalent pseudorange terms.

B. Example of MP for One Satellite Track

Equations (5)—(7) are defined at the time a GPS signal is
received on the Earth. For any given GPS receiver that records
measurements every 15 s, there are thousands of MP; measure-
ments per day per satellite. We use the satellite track highlighted
in Fig. 1 to demonstrate some of the features of M P, data (Fig. 6).
The satellite rises in the northwest and sets in the southwest
several hours later; we split it into a northwest track and a
southwest track [Fig. 6(a) and (b)]. For elevation angles greater
than 20°, the MP; time series for this satellite track is dominated
by a white noise process, with a somewhat larger RMS in the
northwest than in the southwest portion. There is no obvious
evidence of the multipath effects that were shown in Section IV.
However, at low elevation angles [Fig. 6(c)], the northwest track
is dominated by high-frequency, high-amplitude oscillations.
These observations are consistent with multipath predictions for
areflector height of ~40 m (Fig. 5, bottom panel). In contrast, at
best there is only a weak multipath signal as the satellite sets in
the southwest [Fig. 6(d)]. Since the same satellite transmitted the
signal (satellite 1) and the same receiver (P048) recorded the
data, the source of the difference must be related to the terrain at
the site. Recall, that it is geometry (i.e., reflector heights) that
controls pseudorange multipath frequencies, not vegetation. The
latter only impacts pseuodorange multipath amplitudes.

The digital elevation map (Fig. 3) for P048 provides insight as
to the source of the differences. P048 site is located on a hill. To
the northwest, there is a flattening in the terrain ~ 100 m from the
antenna. This region is locally planar and ~40 m below the
antenna. In contrast, reflections from satellites rising/setting in
the northeast, at the same elevation angles (10°—15°) and at the
elevation difference, are not observed. This is because the hill

blocks the antenna from receiving the far reflections from the
northeast.

In contrast, the terrain to the southwest has a fairly gentle
slope. Forward models using the DEM for this site indicate that
the terrain southwest of the antenna is consistent with a nominal
reflector height of ~2 m [51]. We can also see in Fig. 6(c) that
the amplitude of the MP; oscillations is significantly smaller in
the late spring than was observed in early spring. Since we know
that GPS has a repeating ground track (Section II), this decrease
in MP; amplitude between early and late spring must be caused
by a decrease in the multipath reflection coefficient a. This
change is consistent with an increase in VWC between the two
dates. The southwest satellite track shows no obvious variation in
« between early and late spring because the multipath error is
small compared to the measurement error €.

C. Defining a Multipath Reflection Metric

We seek a precise GPS reflection metric based on MP; that is
1) sensitive to the reflectivity (and thus vegetation cover) of the
ground and 2) representative of the vegetation surrounding each
site. Since MP; time series vary to first order as oD (recall that
D is the excess path length), the RMS of an individual MP;
time series will also depend on aD (accomplishing goal 1).
Recalling the expansive azimuthal coverage of the GPS constel-
lation [Fig. 1(a)], an average of the all the satellite MP; RMS
data fulfills goal 2. A database of daily mean MP; RMS statistics
for each site is routinely compiled by the operators of PBO [53];
hereafter we will call this statistic MP;rms, as in [39]. The
MP;rms is a weighted mean, i.e., it is weighted by the number of
observations for each satellite.

For an L-band bi-static radar, we expect that MPrms in
western Montana (the location of P048) will be largest in early
spring (when vegetation has low water content) and smaller in
early summer (when VWC peaks). This hypothesis is supported
by the MP;rms observations [Fig. 7(a)]. The individual satellite
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Fig. 7. (a) Station P048 MP1lrms (ordered by magnitude) for individual GPS
satellites for days in early and late spring and (b) the same quantities for station
P041, near Boulder, Colorado. GPS satellites are numbered from 1 to 31.

MP;rms data also show the effects of terrain. Satellites 30, 10, 4,
5, and 29 [shown furthest to the left in Fig. 7(a)] all have very
large MPrms values. These satellites also have the largest
percentage of satellite observations from the northwest azimuths
[i.e., Fig. 6(a)].

Even though it is difficult to see any kind of multipath effect in
the individual MPrms time series at flatter sites, we have still
found it possible to detect seasonal signals by averaging over the
entire constellation. PBO site P041, located south of Boulder,
Colorado, is a “flat” site. The antenna is 2 m above the ground,
and there is less than 20 cm of terrain relief over the nominal GPS
footprint. In Fig. 7(b), we plot individual satellite MP;rms
values for two days, one in early and the other late spring. The
seasonal variations are not nearly as striking as they were for
P048. For a few satellites, the ground is more reflective in late
spring than early spring (e.g., satellite 24). But overall, there are
many more that follow the expected behavior of VWC, high
MP;rms in early spring and low MP;rms in late spring. We
have found that by using averages of the individual satellite
MP;rms time series, vegetation signals are detectable at more
than 300 PBO sites. Before these MPrms data can be used for
phenological studies, we must first address the issue of outliers
caused by snow and rain.

D. Outlier Detection

A typical time series of daily MP;rms values is shown in
Fig. 8(a). The 6-year MP; rms time series shows similar behavior
as 16-day NDVI data [Fig. 8(d)]. However, there is significant
scatter in the winter and late fall that appears to be more episodic
in nature. Many—but not all—of these outliers are coincident
with near-zero NDVI values, i.e., they are consistent with snow
cover.

Because GPS is an L-band system, GPS reflections will be
sensitive to water within and on the surface of vegetation, as well
as water in soil and snow. It is this very sensitivity that is
being used by other terrestrial hydrology investigators [26],
[27], [36]-[38], [53]-[55]. To isolate the vegetation signal,
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Fig. 8. (a) MPrms values for station P048 taken from the UNAVCO database
[53] (observed), (b) MPrms data after snow clearing using climatology model,
(c) final edited MPrms time series, with NMRI values shown on the right y-axis,
and (d) 16-day MODIS NDVI product.

MP;rms data impacted by snow and very wet soil must be
removed. We used the [56] dataset of climatological monthly
snow water equivalent to identify times when snow was likely;
data from those months were removed [Fig. 8(b)]. This is an
overly conservative data editor; an improved snow filter is being
developed that uses measured snow-extent observations from
MODIS. The remaining outliers in the MP;rms data are mostly
related to early or late snowstorms or rainfall. Modeled tempera-
ture and precipitation data from the North American Land Data
Assimilation System (NLDAS) were used to identify these early/
late snowfall events and rainfall [57]. Snow events were defined
based on the minimum NLDAS temperature and the daily
precipitation value being greater than 2 mm. For small rain
events (5-10 mm), that day was removed. For larger rain events
(>10 mm), both the day it rained and the following day were
removed. Finally, a 2-week running mean was used to identify
and remove three-standard deviation outliers. The resulting
MP;rms data are shown in Fig. 8(c).

E. Normalization

The MPrms results for site P048 shown in Fig. 7(c) are
consistent with those presented by [39], although the time series
is now 6 years long instead of 3 years. Outliers present in that
initial study are now much less frequent. Changes in NDVI
strongly correlate (~ —0.8) with changes in MP;rms at P048
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[Fig. 8(d)]. This is the case at many other PBO sites, although
MP;rms changes in the P048 eco-region typically lag those
observed in NDVI by 1-3 weeks. Since the MP;rms values are
influenced by the excess path length term D in (4), MP;rms time
series from different GPS sites cannot be directly compared with
each other. For example, at a flat site (P041), the largest MP;rms
values are ~0.28 m; at the hilly site, P048, the largest values are
~0.37 m. This does not mean that P048 has VWC that is 32%
(the ratio of 0.37/0.28) larger than for PO41. In order to remove
the first-order terrain effect caused by the excess path delay, we
use a normalization (NMRI) that scales MP;rms by its maxi-
mum value. The latter represents the best estimate of when the
signal is being reflected by the land surface with the minimum
amount of VWC. In Fig. 8(c), the maximum MP;rms (shown by
the dashed line) is based on the average of the largest 5% daily
MP;rms values. A negative ratio is used so that NMRI follows
the vegetation growth cycle, i.e., NMRI increases as VWC
increases and vice versa:

—(MPirms — max(MPrms))

NMRI = max (M Pyrms) ©)

In paper II, we show that this normalization yields a consistent
relationship between NMRI and in situ measured VWC across
four GPS sites in Montana.

F. Footprint

Ordinarily the footprint of a remote sensing technique would
be described before showing results using the technique. Here,
we have first developed simple theoretical descriptions of the
method and showed representative results so that the footprint
would be seen in that context. If all GPS sites were located in flat
terrain, it would be straightforward to define the NMRI footprint
(see, e.g., the appendix of [58]). The Fresnel zone for a single
rising or setting satellite track (for a typical antenna height) is an
ellipse, ~ 22 m in length (starting close to the antenna), but quite
narrow (~4 m from side to side). By using the entire constella-
tion, the flat-terrain footprint basically mimics the first satellite
coverage plot we showed (see Fig. 9). The pie-shaped region
removed from the footprint represents the lack of satellites
transmitting from the azimuth angles —30° to 30°. The radius
of this site footprint (~22 m) depends directly on the antenna
height H, ~2 x H/tan(e), where e is the minimum elevation
angle of 10° and H is here assumed to be 2 m. The area of the flat-
terrain footprint is ~ 1000 m?. If the GPS antenna was deployed
on a 10 m tower over flat terrain, the site footprint would have a
radius of ~115 m and a correspondingly larger footprint area.
However, there are no such tower-mounted sites in the PBO
network (Fig. 2).

What about a site like P048, where we know that there are
reflections coming in a vertical distance greater than 2 m? We
have used a modified version of [51] to calculate the footprint of
reflections for P048 using the digital elevation map (Fig. 3). In
addition to the central footprint already discussed, this simulation
shows a large circular footprint ~ 150 m away from the antenna.
The area of this “hotspot” is in fact larger than the central
footprint. The NMRI measurement thus includes the effects of

Fig. 9. Footprint of the NMRI metric at GPS site P048. This site’s footprint
includes both near-reflections (central circle with pie shape removed) based on the
~2-m antenna height and a large secondary footprint (hotspot) to the northwest
caused by terrain differences. Image taken from Google Earth. Radial distances
given in meters (62, 125, 168, 250) for the white circles.

both reflection areas, but is dominated by the far reflections. This
means that each NMRI site will have its own footprint. For
example, at some GPS sites, there will be hotspots to the east of
the GPS antenna and at other GPS sites they will be to the south.
Some GPS sites will have more than one hotspot. The location
and size of the hotspot(s) depend on the vertical height of the
planar surface with respect to the antenna. It will also depend on
whether these local planar surfaces produce reflections that can
be observed at the antenna. These hotspots are most easily
mapped out with an electromagnetic simulation software. Such
an analysis requires a DEM. Because of the way a GPS receiver’s
tracking loop has been programmed, no reflected signals can be
observed that are delayed more than 300 m. Therefore, the
maximum distance of reflections contributing to NMRI is
300 m from the antenna. Thus unlike a satellite remote sensing
system, NMRI does not have one pixel size. It has a variable
footprint that will yield useful phenological metrics if the
footprint is representative of the ecosystem surrounding the
antenna. An initial study of 305 NMRI time series found
significant correlations with VOD estimates at 90% of the sites,
suggesting that the PBO network does have sensing zones that
are representative of the regional ecosystems [58].

V. DISCUSSION

Reflected signals measured by GPS ground receivers sense
variations that are consistent with vegetation growth. These GPS
reflection measurements are calculated on a daily basis and are
unaffected by atmospheric effects such as clouds. The spatial
footprint of the method depends on the terrain at the site, with a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LARSON AND SMALL: NORMALIZED MICROWAVE REFLECTION INDEX

minimum footprint of 1000 m?. Methods have been developed
to remove errors caused by snow and rain. A preliminary NMRI
database has been compiled and consists of ~330 time series
spanning the years 2007-2012 (http://xenon.colorado.edu/portal).
A landcover classification is provided for each site. The bulk of
the sites are grasslands, shrublands, and savannas (146, 74, and
70 sites, respectively). Since the purpose of the GPS network was
to precisely measure the position of the ground, very few of the
NMRI sites are located in heavily forested regions, as trees
degrade positioning accuracy. It is expected that PBO will be
maintained by NSF until at least 2020, providing an opportunity
to measure the vegetation response to climate variability in the
western United States over ~ 15 years. We plan to add NMRI
data for ~ 50 more sites to the data portal, with most of the new
sites coming from desert ecosystems and Alaska. Surface soil
moisture content and snow depth are provided for ~ 150 GPS
sites using related GPS reflection methods [54], [55].

Here we have not linked the observed fluctuations in NMRI to
changes in any particular biophysical parameters. In paper II, we
show that NMRI correlates with VWC measured in sifu at four
sites and correlates strongly with NDVI at 12 sites. All these
comparison sites are located in Montana grasslands.

We make five final observations about NMRI:

1) NMRI is based on average MP,rms records for each GPS
satellite. Other normalizations, such as azimuthally binned
MP;rms data, should also be examined.

2) The algorithm to remove snow-contaminated values is
conservative, which results in significant data removal
during the winter. The definition of maximum MP;rms
can be improved by using satellite products to determine
snow cover instead of climatology models.

3) NMRI is sensitive to variations of « from the multipath
equation (4). It is not expected that « will directly relate to
VWC exactly the same way for different vegetation types.
Models for electromagnetic scattering for different vege-
tation structures should be examined to aid in future
normalizations [59].

4) All pseudorange data recorded by geodetic GPS receivers
are impacted by multipath reflections. That being said,
studies should be undertaken to compare pseudorange
multipath recorded by different receiver manufacturers in
order to evaluate the possibility of receiver-dependent
biases.

5) GPS reflections are impacted by both soil moisture and
vegetation growth. We are able to reliably remove the
effects of soil moisture in this study because it has a smaller
effect on the pseudorange observables than vegetation
growth.

VI. CONCLUSIONS

The EarthScope PBO was designed and deployed to measure
deformation caused by tectonic forces. Here we have shown that
these same GPS instruments are sensitive to changes in vegeta-
tion state. There are over 10 000 GPS receivers around the world
providing data to public archives. Although some of these GPS
sites are located in urban areas, many could provide invaluable
data for phenological research at very low cost. However, the
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Fig. 10. Cartoon depiction of how multipath impacts the observed pseudorange
measurement. The x-axis is measured in chips. The direct signal has no multipath.
A single multipath reflection (0.5 chip delay and a relative amplitude of 0.3) is
shown in red. The receiver tracks the combined signal (green). The y-axis is the
normalized correlation function.

locations of these sites will always be determined by the primary
operator of the network. In the example used in this paper, the site
selection was directed by geophysicists. The GPS technology
used in this study is commercially available and can be installed
by investigators at individual ecosystem study areas, but it would
be more useful for phenology if the GPS antennas were deployed
on towers. This would provide a large, homogeneous footprint
for phenology studies and would complement satellite methods.
Since many scientists use differential GPS to locate field sites,
such a tower-mounted GPS site could also serve as a base station.

APPENDIX |

Excellent summaries and discussions about the GPS pseudor-
ange observable and multipath effects can be found in [45]-[47].
Here we follow the descriptions provided by [48], [49]. The
pseudorange multipath error (M) is directly related to the code
tracking loop behavior and its discriminator equation. In brief, a
GPSreceiver “tracks” by driving the difference between the early
and late discriminator spacing (27,1, to zero. When no multi-
path is present (direct only, Fig. 10):

R(Tg/) — R(=Tg/r) =0 (A1)
where R represents the autocorrelation function of the code.
However, multipath distorts the correlation function as the
receiver must now track the composite signal (combined, Fig. 10)
while retaining correlator spacing 277 . This results in shifted
correlator values due to the multipath delay, and a new discrimi-
nator equation

[R(M +Tyy1) = R(M = Tpy1)]

+ acosp[R(M + Ty, — D) = R(M — Tg;, — D)] =0
(A2)
where « is the ratio of the of the amplitudes of the reflected and

direct signals, ¢ is the phase shift of the reflected relative to the
direct signal, and D is the path delay. If we assume that the
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autocorrelation function has an ideal triangular shape for multi-
path delays shorter than the chip length T’

R(T):l—m

T for |T|<T. (A3)
We can reduce (A2) to
—2M M —-D
T+acosap(—2%) =0 (A4)
and subsequently
_ aD cos . (A5)
1+ acosyp
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