
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Estimation of Snow Depth Using L1 GPS
Signal-to-Noise Ratio Data

Kristine M. Larson and Eric E. Small

Abstract—Accurate measurements of snowpack properties are
needed by scientists to better understand effects of climate vari-
ability on water resource availability. Satellite measurements cur-
rently assess snow cover rather than snow depth. Many in situ
snow sensors/networks lack the necessary spatial and temporal
sensitivity needed for such studies. Existing GPS networks are a
potential source of new snow data for climate and hydrology stud-
ies, but current operational analyses only use signal-to-noise ratio
(SNR) data from the new GPS signal centered at 1.2 GHz (L2C).
These data are often unavailable in GPS archives. A snow depth
algorithm that used the older (less precise) GPS signal centered at
1.5 GHz (L1) would provide longer snow depth time series that are
needed by climate scientists. Here, an algorithm is developed to use
the L1 SNR data. Snow depth estimates are derived for 23 sites for
5 years. These data are compared with existing snow depth time
series derived from the L2C signal. They show an average bias
of 1 cm and correlation of 0.95. Some of this disagreement is due
to differences in the azimuthal coverage of the two datasets. The
L1 snow depth solutions are also compared with in situ measure-
ments, yielding a bias of −4 cm, comparable to the −6 cm bias
found in a previous study of the L2C retrieval algorithm.

Index Terms—Geoscience and remote sensing, radar, bistatic
radar, Instrumentation and measurement, Reflectometry.

I. INTRODUCTION

T WENTY years ago, a new application for GPS signals
was presented by Martin-Neira [1]. Instead of the direct

GPS signals used for positioning, Martin-Neira suggested using
reflected GPS signals as the observable and outlined a method
to use these signals to measure the ocean surface. Many of
the subsequent GPS reflection experiments have been focused
on altimetry and ocean wind applications [2]–[5]. In parallel,
many groups have tested ground-based GPS instruments for
reflection studies. In addition to water levels, ground targets
for GPS reflectometry have included vegetation water content,
soil moisture, and snow depth [6]–[10]. A third group of inves-
tigators has used geodetic instruments to measure reflected
GPS signals. In contrast to the GPS reflectometry studies
that use specially designed instruments to optimally retrieve
the reflected signal, geodetic instruments only measure the

Manuscript received September 11, 2015; revised October 30, 2015;
accepted December 02, 2015. This work was supported by the National Science
Foundation under Grant AGS 1449554 and under Grant EAR 1144221, and
NASA NNX12AK21G. UNAVCO operates the Plate Boundary Observatory
with funds from NSF under Grant EAR-1261833.

K. M. Larson is with the Department of Aerospace Engineering Sciences,
University of Colorado, Boulder, CO 80309 USA (e-mail: kmlarson@
gmail.com).

E. E. Small is with the Department of Geological Sciences, University of
Colorado, Boulder, CO 80309 USA (e-mail: eric.small@colorado.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2508673

interference of the direct and reflected signals. This geodetic-
based method is called GPS Interferometric Reflectometry
(GPS-IR). Geodetic instruments have the disadvantage that they
were designed to suppress reflections, although they can be
deployed to counteract that design feature [11]. The advan-
tage of using geodetic instruments for reflectometry is that they
are often operated by geoscientists and surveyors as permanent
installations where the public has free access to these data.

In 2009, it was shown the GPS-IR technique could be used
to successfully measure snow depth in the region surrounding a
GPS site [12]. Validation of the technique with in situ measure-
ments at 18 sites showed agreement ranged from 2 to 6 cm, with
correlations of 0.97–0.99 for sites with longer time series [13]–
[15]. These initial validations of GPS-IR for snow depth sensing
were based on a modern GPS signal that is often not available in
public data archives. In this contribution, we examine whether
the original GPS (and noisier) signals are of sufficient quality
to be used to measure snow depth. Since many station operators
do not track the new GPS signals, an algorithm that uses the
older signals would be particularly valuable for climate studies
or satellite validation. The goal of this paper is to describe such
an algorithm along with outlining some of its limitations.

II. ANALYSIS OF GPS SNR SIGNALS FOR SNOW DEPTH

GPS satellites were first launched in 1978. Since that time,
they have all transmitted a civilian access (C/A) code on the
L1 frequency (1.57542 GHz) and encrypted codes on both the
L1 and L2 (1.22760 GHz) frequencies. These encrypted codes
will be called L1P and L2P. In the past decade, the GPS pro-
gram began to modernize the constellation. All GPS satellites
launched since 2005 now include a civilian code on L2; it is
called L2C. A third frequency (L5) was added to GPS starting
in 2010; L5 signals are not discussed in this paper.

The Plate Boundary Observatory (PBO) H2O project
uses L2C signal-to-noise ratio (SNR) data collected by the
EarthScope PBO to measure snow depth every day [16], [17].
Deployment of this 1100 station network began in 2004 and
was completed in 2008. PBO initially installed a Trimble netRS
geodetic-quality receiver at all sites. When instruments were
replaced, typically the newer Trimble netR9 was used. Both
units track the L1 and L2 frequencies and produce carrier
phase, pseudorange, and SNR observables. The default track-
ing rate is 15 s. This particular model of receiver tracks the
C/A code on L1 instead of both C/A and P codes. The pri-
mary observable used by geodesists on L2 is based on the
L2P signal. The purpose of the network was to precisely
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Fig. 1. Photograph of GPS site at P038 in Portales, New Mexico
(http://www.unavco.org). The antenna is under the hemispherical radome. The
receiver is stored in a nearby equipment box. The antenna phase center at this
site is approximately 2 meters above the soil surface.

measure tectonic deformation in the western United States
(http://pbo.unavco.org). For this reason, the monument was
built to be strongly coupled to bedrock whenever possible
(Fig. 1). In all but a handful of locations, a PBO antenna is
placed 1.5–2 m above the ground. As with many geodetic net-
works established in this time period, PBO receivers did not
initially track the L2C signal. After establishing that the PBO
receivers could track both the L2P and L2C signals without
degrading the primary positioning products, the operators of the
PBO network began routinely tracking L2C data in July 2011.
For this reason, snow depth products for nearly all PBO H2O
sites begin in fall 2011.

The snow depth algorithm used by PBO H2O is described
in detail in [16], so only the basic principles are summarized
here. SNR data reported on the L2C signal by the GPS receiver
are used to extract the frequency of the interference of the
direct and reflected signals. Because of the antenna gain pattern,
reflected signal effects are primarily seen in data for elevation
angles less than 30 degrees [Fig. 2(a)]. For natural planar sur-
faces, the frequency of the SNR data will be linearly related
to the vertical distance between the GPS antenna phase cen-
ter and the reflecting surface. Because the data are not sampled
evenly and there are gaps, PBO H2O uses the Lomb Scargle
periodogram rather than a fast Fourier transform [Fig. 2(b)]
to retrieve the dominant frequency, and thus “reflector height,”
of the SNR data. As shown in Fig. 2(b), after a snowfall, the
reflector height decreases by the same amount.

Operationally PBO H2O uses data from 30 days in the fall
(but before snow has fallen) to define a “bare soil” reflec-
tor height value. This bare soil value is then subtracted from
all subsequent reflector heights to define snow depth. Because
no operational GPS site is located above a truly planar hori-
zontal surface, each rising or setting satellite track is treated
separately, including the determination of the bare soil value.
The operational snow depth product for PBO H2O is then the
daily average of each satellite track snow depth estimate for a
given day. After satellite tracks are selected, the primary quality
control measures used are:

Fig. 2. (a) GPS SNR data for satellite 25 recorded at site P360 (Island Park,
Idaho, http://www.unavco.org), colors defined as in (b). (b) Lomb Scargle peri-
odograms for the data shown in the top panel. (c) Dominant reflector heights
for days 1–120. Colored lines demark the days shown in the middle panel.

1) the standard deviation of the daily snow depth average;
2) the number of tracks that have a significant spectral peak

amplitude.
The standard deviation test eliminates days where the Lomb

Scargle has picked the wrong peak for one or more satellites.
This occurs infrequently—in our experience, less than 0.5% of
the days. The required peak spectral amplitude value has been
set so that the peak of the periodogram must be four times larger
than the background noise. At snow depth sites that are near
agricultural fields, this metric helps eliminates days (primarily
in May and June) when growing vegetation is attenuating the
GPS reflections and producing nonzero snow depth values [18],
[19]. For L2C snow solutions, the minimum number of tracks
is set to 4 by default.

When PBO H2O snow depth products were validated
[13]–[15], there were only 9 L2C-transmitting satellites. This
resulted in the potential spatial coverage shown in Fig. 3(a).
Note that not all satellites produce the same number of satel-
lite tracks for snow sensing. For example, satellite 1 rises and
sets a total of four times each day, whereas satellite 17 only
does so twice. Furthermore, not all satellite tracks can be used
to estimate reflector height. Small arcs, such as those that rise
to low maximum elevation angles (e.g., 10◦) are always dis-
carded by PBO H2O. Certain azimuths cannot be used because
of roads or buildings, or there is other human interference near
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Fig. 3. (a) Reflection points for L2C satellites visible on day of year 90 in
the year 2012. The circular dotted lines show reflection points for an antenna
2 m above the ground at elevation angles of 5◦, 10◦, 15◦, and 20◦. The col-
ors are coded by satellite number. Reflection points are defined as the reflector
height divided by the tangent of the satellite elevation angle. Only elevation
angles below 25◦ are shown. Quadrants 1–4 are the northeast, northwest, south-
west, and southeast map quadrants. (b) Same for L1 transmitting satellites.
(c) L2C satellite tracks on day of year 280 in the year 2015.

the GPS site; there are also terrain obstructions. In other cases,
the ground surface is too rough. The satellite coverage for the
entire GPS constellation (as would be available if the L1 sig-
nal could be used) is shown in Fig. 3(b); it is clearly superior
to coverage for the L2C constellation in 2012 and today’s L2C
constellation [Fig. 3(c)], which as of September 2015 consists
of 17 satellites.

III. L1 SNOW DEPTH ALGORITHM

The fundamentals of the snow depth algorithms for L1 and
L2C GPS data are the same—peak frequencies are extracted
from periodograms of SNR data from rising or setting satellite
tracks. However, the SNR data recorded for L1 and L2C codes
are not of the same quality. It is generally believed that the L1
SNR data are of lower quality because of cross-channel inter-
ference (see discussion in [16] and [20]). Unfortunately, this
noise in the L1 SNR data is not random and manifests itself
in systematic patterns. The impact of the L1 and L2C noise
spectra can be viewed in terms of reflector height [Fig. (4)].
Here, reflector heights for 1 year are shown for a PBO H2O
site with very high data quality. During this year, there was
very little snow, so the repeatability of the estimated reflector
heights provides insight as to the precision of the L2C GPS-
IR technique, 2–3 cm depending on the satellite track. Contrast
these retrievals with the reflector height time series that was
generated from the L1 signals. Given the large systematic vari-
ations in reflector height, it is not clear at all that a daily average
of these reflector heights will result in an accurate snow depth
estimate.

Satellite tracks used for the L2C PBO H2O snow depth
products are currently chosen manually. While this is only done
once (after a new satellite is launched), it limits automation
of the snow depth products. A better algorithm would auto-
matically evaluate satellites tracks from the statistics of the
data themselves. With that in mind, the L1 algorithm we have
developed has the following steps.

1) Lomb Scargle reflector height periodograms are produced
for all satellites tracks in all candidate azimuth ranges,
typically at 30◦ increments, i.e., 30–60, 60–90, etc. The
reflector height peak of the periodogram on each day for
each rising and satellite satellite track is retained.

2) Bare soil reflector heights are first estimated for an
azimuthal range using the median value of reflector
heights in the fall, and large outliers are removed (those
that are 30 cm from the median value).

3) Bare soil reflector heights are then estimated for each ris-
ing or setting satellite track. Standard deviation of the
estimates used for the bare soil estimate must be less than
7 cm. Satellite tracks without at least 15 bare soil reflector
height values are discarded.

4) A median filter is then used again to remove outliers
before a daily mean is computed. A minimum number of
satellite tracks are required to produce a daily snow depth
average, which by default is set to 10.

For operational use, the only steps that allow intervention are
step 1 (the azimuth ranges) and the number of tracks required.
If, for several years, a given azimuth range never produces snow
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Fig. 4. Reflector height estimates for station P038 for a subset of rising/setting satellite tracks. Blue points are reflector height estimates using the L2C signal and
red points are the same using L1 signals. The L1 and L2C traces have been offset for display purposes. Quadrant 1 is northeast with quadrant numbers increasing
counterclockwise. Site information for P038 is available from http://pbo.unavco.org.

Fig. 5. Reflector height estimates are shown in black for station P030 for the 2011 water year. Each subplot shows the azimuth range defined in the title. Median
bare soil reflector height estimates for each azimuth range are shown in red. Outliers detected by the algorithm are shown in gray.

depth retrievals, the operator can remove that azimuth range
going forward. Doing so neither helps nor hurts the opera-
tional snow depth estimates but has the benefit of reducing CPU
usage.

Fig. 5 shows reflector height for five azimuth ranges at PBO
site P030. The presence of very large outliers at all times of
year is noted. Many of these are removed at this stage via the
median filter, where all tracks in a given azimuth range are

binned together. Fig. 6 shows preliminary snow depth values
for the same azimuth ranges with gross outliers removed and
each satellite track set to its own bare soil value. The pres-
ence of apparent artifacts in these preliminary values is again
noted, i.e., azimuth range 180–210 shows large snow depth val-
ues in May and June. Fig. 7 shows the final estimates for snow
depth, which have again been screened with a median filter, so
that those errant May and June values from step 2 have been



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LARSON AND SMALL: ESTIMATION OF SNOW DEPTH USING L1 GPS SIGNAL-TO-NOISE RATIO DATA 5

Fig. 6. Preliminary snow depth estimates for station P030 for the 2011 water year. Each satellite track has had a bare soil estimate removed, shown as the red
dashed line, with the y-axis depicting snow depth.

Fig. 7. L1-based snow depth estimates for station P030 for the 2011 water year
(shown in blue). These are the average of the gray estimates, which represent
individual satellite track estimates.

eliminated. Both the individual satellite track estimates of snow
depth and the average value are shown. Note that the preci-
sion is best in September and October because these months
were used to define the bare soil values. We found that the L1
algorithm performs the worst at sites with poorly resolved L2C
solutions. In order to use the L2C data at these sites, we had
lowered the required spectral peak amplitude. Given that the
background noise level in L1 data is higher than for L2C data,
we suspect that this helps explaining the poor performance of
the L1 algorithm at these sites.

How well does the L1 analysis agree with the official L2C-
based PBO H2O snow depth products? Fig. 8 shows snow
depth estimates for P030 compared over five years. The bias
between L1 and L2C at this site is less than 1 cm; the correlation
between the two snow depth time series is 0.99. The azimuths
of satellite tracks used in each year are also shown in Fig. 8.
One can see that there is general overlap between the L2C and

L1 azimuth ranges, with the exception of the more westerly
azimuths, where more L2C tracks have been used. There is also
a general increase in the number of L2C tracks, particularly in
the 2015 water year, which is due to the launch of three satel-
lites in 2014 (the fourth satellite launched in December was not
used in these comparisons).

IV. DISCUSSION

For this study, we have computed snow depth estimates using
L1 SNR data at 23 PBO H2O sites (Table I). We have com-
pared average snow depth results with L2C results for 3–5
years, depending on the site. In choosing sites, we deliber-
ately excluded ephemeral snow sites, as those comparisons are
dominated by a few snowstorms a year rather than persistent
snow. The mean bias between L1- and L2C-based snow depth
for these 23 sites is −1.2 cm. The correlations vary from 0.84
to 0.99, with an average correlation of 0.95. Some—but not
all—of the variation in correlation and bias is due to differ-
ences in azimuthal coverage of the two datasets. We conclude
from these statistics that the L1 solutions are sufficiently accu-
rate to make publicly available to climate scientists and water
managers. As noted in Table I, this doubles the timespan of the
PBO H2O snow depth dataset. In this study, we did not eval-
uate the L2P signals, but recent studies indicate that these can
also be used to augment L2C snow depth retrievals [21]–[23].

The accuracy of the L2C snow depth method was previ-
ously addressed for 18 sites in the western U.S. [13]. In that
study, in situ samples were taken on transects at 6 azimuths: 0◦,
45◦, 160◦, 180◦, 200◦, and 315◦. Each azimuth was sampled
along a transect at 1-m intervals. For the comparison between
in situ and L2C snow depth, averages were compared. The
average in situ measurement was used as the accuracy met-
ric deliberately so that it represented snow variability for the
entire site. No azimuthal comparisons were made. Here, we use
the same in situ data to assess accuracy of the L1 solutions.
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Fig. 8. (a) Comparison of L1 and L2C snow depth estimates for the water years
2010–2015. (b) Azimuthal coverage for snow depth estimates between 2010
and 2015.

We excluded some of the sites used in [13] because of the
followings.

1) They represent measuring snow depth values of zero
(P030 and P353).

2) The L1 algorithm failed (P455, P029).
3) The snow levels were too close to the antenna when the

in situ measurements were made (P351).
4) There are no older L1 datasets to test (RN86).
Instead of comparing to an average of all in situ data as was

done in [13], in Fig. 9, we compare the L1 snow depth retrievals
in the same azimuth ranges as the in situ data. It is clear that

TABLE I
SNOW DEPTH MEASUREMENTS FROM L1 DATASET. ALL L2C SERIES

BEGIN IN 2012 EXCEPT FOR P101, P033, P360, P030, P676, AND P684.

Fig. 9. Comparison of L1-based snow depth estimates for selected azimuths
and in situ measurements.

the GPS snow depths are negatively biased compared to the in
situ measurements; this bias is −4.1 cm. This is close to the
previously reported value of −6 cm.

V. CONCLUSION

PBO H2O will continue to base their operational snow depth
products on the L2C SNR data. However, this paper demon-
strates that if L1 SNR data are available, a suitable snow depth
product can also be derived at many sites that agrees well with
both L2C retrievals and in situ measurements. This algorithm
is especially valuable as many geodetic networks do not track
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the L2C signal or if they do, they do not archive these data.
Quality control must be much stricter to be able to use the L1
SNR data for snow depth estimation, with particular difficul-
ties using these observations when vegetation begins to grow in
May and June (in the western U.S.). However, as long as care is
taken, the L1 data can be used to provide a precise and accurate
snow depth time series for a decade or more at many sites in the
western United States.

ACKNOWLEDGMENT

C. Roesler helped write software used in this paper. S. Castro,
F. Nievinski, J. Braun, and K. Boniface contributed to the
development of the snow depth software used by PBO H2O.

REFERENCES

[1] M. Martin-Neira, “A passive reflectometry and interferometry system
(PARIS)—Application to ocean altimetry,” ESA J., vol. 17, no. 4, pp. 331–
355, 1993.

[2] J. L. Garrison, A. Komjathy, V. U. Zavorotny, and S. J. Katzberg, “Wind
speed measurement using forward scattered GPS signals,” IEEE Trans.
Geosci. Remote Sens., vol. 40, no. 1, pp. 50–65, Jan. 2002.

[3] J. L. Garrison and S. J. Katzberg, “The application of reflected GPS sig-
nals to ocean remote sensing,” Remote Sens. Environ., vol. 73, no. 2,
pp. 175–187, 2000, doi: 10.1016/s0034-4257(00)00092-4.

[4] S. Gleason et al., “Detection and processing of bistatically reflected GPS
signals from low earth orbit for the purpose of ocean remote sensing,”
IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1229–1241, Jun.
2005, doi: 10.1109/TGRS.2005.845643.

[5] C. Ruf et al., “CYGNSS: Enabling the future of hurricane prediction,”
IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 52–67, Jun. 2013, doi:
10.1109/MGRS.2013.2260911.

[6] A. M. Semmling et al., “Detection of arctic ocean tides using interfero-
metric GNSS-R signals,” Geophys. Res. Lett., vol. 38, no. 4, 2011, doi:
10.1029/2010GL046005, L04103.

[7] N. Rodriguez-Alvarez et al., “Land geophysical parameters retrieval
using the interference pattern GNSS-R technique,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 1, pp. 71–84, Jan. 2011, doi:
10.1109/TGRS.2010.2049023.

[8] E. Cardellach, F. Fabra, A. Rius, S. Pettinato, and S. D’Addio,
“Characterization of dry-snow sub-structure using GNSS reflected sig-
nals,” Remote Sens. Environ., vol. 124, pp. 122–134, 2012.

[9] N. Rodriguez-Alvarez et al., “Snow thickness monitoring using GNSS
measurements,” IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1109–
1113, Nov. 2012.

[10] A. Egido et al., “Global navigation satellite systems reflectometry as a
remote sensing tool for agriculture,” Remote Sens., vol. 4, no. 8, pp. 2356–
2372, 2012, doi: 10.3390/rs4082356.

[11] M. D. Jacobson, “Inferring snow water equivalent for a snow-covered
ground reflector using GPS multipath signals,” Remote Sens., vol. 2,
no. 10, pp. 2426–2441, Oct. 2010.

[12] K. M. Larson, E. E. Gutmann, V. Zavorotny, J. Braun, M. Williams,
and F.G. Nievinski, “Can we measure snow depth with GPS receivers?”
Geophys. Res. Lett., vol. 21, no. 3, pp. 876–880, 2009.

[13] J. McCreight, E. E. Small, and K. M. Larson, “Snow depth, density, and
SWE estimates derived from GPS reflection data: Validation in the west-
ern U.S.,” Water Resour. Res., vol. 50, no. 8, pp. 6892–6909, 2014, doi:
10.1002/2014WR015561.

[14] F. G. Nievinski and K. M. Larson, “Inverse modeling of GPS multipath
for snow depth estimation, Part I: Formulation and simulations,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6555–6563, Oct. 2014.

[15] F. G. Nievinski and K. M. Larson, “Inverse modeling of GPS multipath
for snow depth estimation, Part II: Application and validation,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6564–6573, Oct. 2014.

[16] K. M. Larson and F. G. Nievinski, “GPS snow sensing: Results from the
earthscope plate boundary observatory,” GPS Solutions, vol. 17, no. 1,
pp. 41–52, 2013.

[17] K. M. Larson and E. E. Small, “Using GPS to study the terrestrial water
cycle,” EOS Trans. AGU, vol. 94, no. 52, pp. 505–506, Dec. 24, 2013.

[18] C. C. Chew, E. E. Small, K. M. Larson, and V. Zavorotny, “Vegetation
sensing using GPS interferometric reflectometry: Theoretical effects
of canopy parameters on signal to noise ratio data,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 5, pp. 2755–2764, 2015, doi:
10.1109/TGRS.2014.2364513.

[19] W. Wei, K. M. Larson, E. E. Small, C. Chew, and J. J. Braun, “Using GPS
receivers to measure vegetation water content,” GPS Solutions, vol. 19,
no. 2, pp. 237–248, 2015, doi: 10.1007/s10291-014-0383-7.

[20] K. M. Larson, J. J. Braun, E. E. Small, V. Zavorotny, E. Gutmann, and
A. Bilich, “GPS multipath and its relation to near-surface soil moisture,”
IEEE J. Sel. Topics. Appl. Earth Observ., vol. 3, no. 1, pp. 91–99, Mar.
2010, doi: 10.1109/JSTARS.2009.2033612.

[21] M. Ozeki and K. Heki, “GPS snow depth sensor with geometry-free
linear combinations,” J. Geod., vol. 86, no. 3, pp. 209–219, 2012, doi:
10.1007/s00190-011-0511-x.

[22] J. Hefty and L Gerhatova, “Using GPS multipath for snow depth sensing-
first experience with data from permanent stations in Slovakia,” Acta
Geodyn. Geomater., vol. 11, no. 1, pp. 53–63, 2014.

[23] S. Jin and N. Najibi, “Sensing snow height and surface temperature varia-
tions in Greenland from GPS reflected signals,” Adv. Space Res., vol. 53,
no. 11, pp. 1623–1633, 2014.

Kristine M. Larson received the B.A. degree
in engineering sciences from Harvard University,
Cambridge, MA, USA, in 1985, and the Ph.D.
degree in geophysics from the Scripps Institution of
Oceanography, University of California at San Diego,
La Jolla, CA, USA, in 1990.

Since 1990, she has been a Professor of
Aerospace Engineering Sciences with the University
of Colorado, Boulder, CO, USA. Her research inter-
ests include applications of GPS.

Eric E. Small received the B.A. degree in geology
from Williams College, Williamstown, MA, USA, in
1993 and the Ph.D. degree in geophysics from the
University of California at Santa Cruz, Santa Cruz,
CA, USA, in 1998.

He is a Professor of geological sciences with the
University of Colorado, Boulder, CO, USA.


